133 research outputs found

    Performance Analysis of Wireless Systems with Doubly Selective Rayleigh Fading

    Get PDF
    Theoretical error performances of wireless communication systems suffering from both doubly selective (time varying and frequency selective) Rayleigh fading and sampler timing offset are analyzed in this paper. Single-input-single-output systems with doubly selective fading channels are equivalently represented as discrete-time single-input-multiple-output (SIMO) systems with correlated frequency-flat fading channels, with the correlation information being determined by the combined effects of sampler timing phase, maximum Doppler spread, and power delay profile of the physical fading. Based on the equivalent SIMO system representation, closed-form error-probability expressions are derived as tight lower bounds for linearly modulated systems with fractionally spaced equalizers. The information on the sampler timing offset and the statistical properties of the physical channel fading, along with the effects of the fractionally spaced equalizer, are incorporated in the error-probability expressions. Simulation results show that the new analytical results can accurately predict the error performances of maximum-likelihood sequence estimation and maximum a posteriori equalizers for practical wireless communication systems in a wide range of signal-to-noise ratio. Moreover, some interesting observations about receiver oversampling and system timing phase sensitivity are obtained based on the new analytical results

    Optimal Diversity Combining Based on Linear Estimation of Rician Fading Channels

    Get PDF
    Optimal receiver diversity combining employing linear channel estimation is examined. Based on the statistical properties of pilot-assisted least-squares (LS) and minimum mean square error (MMSE) channel estimation, an optimal diversity receiver for wireless systems employing practical linear channel estimation on Rician fading channels is proposed. Exact analytical expressions for the symbol error rates of LS and MMSE channel estimation aided optimal diversity combining are derived. It is shown that an MPSK wireless system with MMSE channel estimation has the same SER when the MMSE channel estimation is replaced by LS estimation. This is an interesting counter-example to the common perception that channel estimation with smaller mean square error leads to smaller SER. Extensive simulation results validate the theoretical results

    Frequency-Domain Channel Estimation and Equalization for Broadband Wireless Communications

    Get PDF
    Frequency-domain equalization (FDE) is an effective technique for high data rate wireless communication systems suffering from very long intersymbol interference. Most of existing FDE algorithms are limited to quasi-static or slow time-varying fading channels, where least mean squares (LMS) or recursive least squares (RLS) adaptive algorithms were utilized for channel estimation. In this paper, we employ interpolation method to develop channel estimation algorithm in the frequency domain. We show that the new channel estimation algorithm can significantly outperform LMS and RLS algorithms. Numerical examples demonstrate that the new algorithm can track time-varying fading channels with Doppler up to 300-400 Hz. This means, for 1.9 GHz carrier frequency band, the new algorithm can provide good bit error rate performance even if the mobile is moving at a high speed of 170-228 kilo-meters per hour, while the fading channel impulse response is 60 taps long

    On Discrete-Time Modeling of Time-Varying WSSUS Fading Channels

    Get PDF
    In this paper, we consider the serial concatenation of linear time-varying (LTV) systems and its impact on the discrete-time modeling of wide-sense stationary uncorrelated scattering (WSSUS) fading channels. By deriving an expression for the composite impulse response of the overall concatenated system, we find that unlike the time-invariant case, the concatenation of LTV systems is not commutative, i. e., the order of arrangement affects the overall impulse response. This has significant impact when a digital transmission over a time-varying fading channel, which is an LTV channel, is represented by an equivalent discrete-time model that incorporates both transmitter and receiver filters. We further show that if the maximum Doppler frequency is much smaller than the system bandwidth, the concatenation of LTV systems is approximately commutative, then a convenient and efficient representation in the discrete-time domain for WSSUS fading channels is obtainable

    A Statistical Simulation Model for Mobile Radio Fading Channels

    Get PDF
    Recently, a Clarke\u27s model-based simulator was proposed for Rayleigh fading channels. However, that model, as shown in this paper, may encounter statistic deficiency. Therefore, an improved model is presented to remove the statistic deficiency. Furthermore, a new simulation model is proposed for Rician fading channels. This Rician fading simulator with finite number of sinusoids plus a zero-mean stochastic sinusoid as the specular (line-of-sight) component is different from all the existing Rician fading simulators, which have non-zero mean deterministic specular component. The statistical properties of the proposed Rayleigh and Rician fading channel models are analyzed in detail, which shows that these statistics either exactly match or quickly converge to the theoretically desired ones. Additionally and importantly, the probability density function of the Rician fading phase is not only independent from time but also uniformly distributed, which is fundamentally different from that of all the existing Rician fading models. The statistical properties of the new simulators are evaluated by numerical results, finding good agreement in all cases
    • …
    corecore